
International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 685
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Context-Sensitive Modeling for Intrusions
Detection in Multitier Web Applications

Mounika B, A. Krishna Chaitanya

Abstract- This strategy is mainly focus on to detect intrusion in multitier web applications. Multitier web application include two ends that is front end as
well as back end of the applications. Modern multi-tier application systems are generally based on high performance database systems in order to
process and store business information. Containing valuable business information, these systems are highly interesting to attackers and special care
needs to be taken to prevent any malicious access to this database layer. In this work we propose a novel approach for modeling SQL statements to
apply machine learning techniques, such as clustering or outlier detection, in order to detect malicious behavior at the database transaction level. The
approach incorporates the parse tree structure of SQL queries as characteristic e.g. for correlating SQL queries with applications and distinguishing
benign and malicious queries. We demonstrate the usefulness of our approach on real-world data.

Index Terms: Context-sensitive methods, Intrusion detection system, Machine learning techniques, Multi-tier web architecture, SQL Injection attacks,
SQL queries, Pattern mapping techniques

1. INTRODUCTION

Web Services are very much useful nowadays in many
domains like banking, travel, social networking etc. These
web services operate on the basis of web or internet. These
web services are implemented by using front end web
server(e.g. http server) and back end server(e.g. database
server or file server).Because of popularity of these web
services for personal or corporate work, these are always
targeted by attackers to do misbehaving activities or
attacks[1]. The majority of today’s web-based applications
does rely on high performance data storage for business
processing. A lot of attacks on web-applications are aimed
at injecting commands into database systems or try to
otherwise trigger transactions to gain unprivileged access
to records stored in these systems. See [1] for a list of
popular attacks on web applications. Traditional network-
based firewall systems offer no protection against these
attacks, as the malicious (fractions of) SQL or tampered
requests are located at the application layer and thus are
not visible to most of these systems. The usual way of
protecting modern application systems is by introducing
detection models on the network layer or by the use of web
application firewall systems. These systems often employ a
misuse detection approach and try to detect attacks by
matching network traffic or HTTP request against a list of
known attack patterns. A very popular system based on
pattern matching is for instance the Snort IDS [2].

Another project aiming at the detection of tampered HTTP
requests is the ModSecurity module, which provides a rule-
engine for employing pattern based rules within a Web-
Server [3]. Instead of using pattern based approaches, there
exists a variety of papers on employing anomaly-based
methods for detecting web-based intrusions [4; 5; 6]. These
either try to analyze log-files or protocol-level information
to detect anomalies based on heuristics or data-mining
techniques. We earlier proposed a rule based learning
approach using the ModSecurity module in [7]. These
approaches are rooted at the network or application
protocol layer. In this work we focus on the detection at the
database layer, i.e. the detection of anomalous SQL
statements, that are either malicious in the sense that they
include parts of injected code or differ from the set of
queries usually issued within an application. The main
contribution of our work is the use of a grammar based
analysis, namely tree-kernel based learning, which became
popular within the field of natural language processing
(NLP). Our approach incorporates the parse tree structure
of SQL queries as characteristic e.g. for correlating SQL
queries with applications and distinguishing benign and
malicious queries. By determining a context sensitive
similarity measure we can locate the nearest legal query for
an malicious statements which helps in root cause analysis.

Fig 1 depicts an Intrusion detection system

————————————————
 Mounika B is currently pursuing masters degree in Computer Science

Engineering in Vardhaman College of Engineering, Shamshabad,
Hyderabad, India. PH- 919848789909. E-mail: mouni2089@gmail.com

 A Krishna Chaitanya is currently associate professor in Vardhaman
College of Engineering, Hyderabad, India. PH-919949122135, E-mail:
chaituit2004@gmail.com

International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 686
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Fig1: Intrusion Detection System

There are following three measures to evaluate efficiency of
Intrusion Detection System:
1. Accuracy – Inaccuracy occurs when an IDS signals that
an abnormal action is taken in the given environment.
2. Performance – The performance of the system describes
the quality of that system. If the performance of IDS is poor
then real time detection is not possible.
3. Completeness – When IDS fails to detect an attack then
incompleteness occurs. This is very difficult to evaluate
because it is impossible to have a global knowledge about
all the attacks[3].

2. Related Work

A fundamental rule in three tier architecture is the client
tier never communicates directly with the data tier; in a
three-tier model all communication must pass through the
middle tier called Web tier. Conceptually the three-tier
architecture is linear. However, the MVC architecture is
triangular: the view sends updates to the controller, the
controller updates the model, and the view gets updated
directly from the model. Executing malicious statements on
a database may result in severe problems, which can range
from exposure of sensitive information to losing records or
broken integrity. Once an attacker manages to inject code
into a database this will likely not only affect specific
records, but may lead to a compromise of the complete
application environment. This in turn can cause severe
outages with respect to data records and a company’s
public reputation. Although the risk may seem low on a
first glance, given the database layer is separated from the
public interface (web/presentation layer) and not directly
accessible from the outside, anomalous queries caused by
e.g. SQL injection attacks are a widespread problem. The
Web Hacking Incident Database provides a listing of recent
web hacks, a lot of them relying on SQL injections [8].
There have been approaches to apply data-mining and
machine learning methods to detect intrusions in databases.
Lee et al [9] suggest learning fingerprints of access patterns
of genuine database transactions (e.g. read/write sequences)

and using them to identify potential intrusions. Typically
there are many possible SQL queries, but most of them only
differ in constants that represent the user’s input. SQL
queries are summarized in fingerprints (regular
expressions) by replacing the constants with variables or
wild-cards. Such fingerprints capture some structure of the
SQL queries. Following the approach of [9], queries not
matching any of the existing fingerprints are reported as
malicious. A drawback of this approach is its inability to
correlate and identify fingerprints with applications. In [10]
the authors also try to detect SQL injections by a kind of
fingerprints. They use parse trees of queries as fingerprints
for the queries structure. The main idea here is to compare
the parse tree of an SQL statement before and after user-
variables have been inserted. Injected SQL fragments will
typically significantly change the trees structure. An
example of such structural changes in the parse tree of a
query is shown in figure 1. In this figure, the rounded
nodes of the tree indicate the additional parts that have
been added due to the injection SQL fragment ’ OR 1 > 0 --.
As this work only uses a one-to-one comparison on parse-
trees it is missing any generalization capabilities and thus
not applicable for machine learning methods, such as
clustering and outlier detection. A similar grammar-based
approach has been used in [11], which studied the use of
syntax-aware analysis of the FTP protocol using tree-kernel
methods on protocol parse-trees. A slightly different
approach was taken in [12] where the parse tokens are used
along with their values to detect anomalies in HTTP-traffic.
The latter approach does not use the full parse tree but its
leaves. Our work is similar to [11; 12] in the sense that it
employs machine learning methods on syntax trees derived
from a protocol parser. Also approaches on investigating
data dependencies have been proposed in [13] and [14].
Data dependencies refer to access correlations among
sensitive data items. Data dependencies are generated in
form of classification rules like before an update of item1 a
read of item2 is likely. Transactions not compliant to these
rules are flagged as malicious. Srivastava et al [14] further
distinguish different levels of sensitivity of data items
which need to be specified
by hand. Both approaches ignore the structure of SQL
queries and are unable to correlate SQL queries with
applications. A more recent work has been presented in
[15], focusing on the sequential nature of SQL queries.
These studies also make use of a smart modeling technique
to easily apply data mining methods on their SQL
representations.

International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 687
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

2.1 SQL Parsing
The basic idea of [10] is to detect SQL injection attacks by
means of changes in a queries syntax tree. In order to obtain
such a parse tree, a parser for the SQL dialect is required.
Usually complex parsers are automatically generated based
on a given grammar description using tools such as yacc,
antlr or javacc. Unfortunately, the availability of proper
grammar descriptions for SQL is pretty sparse and most
existing parser implementations are tightly wired into the
corresponding DBMS, making it laborious to extract a
standalone parser. We therefore decided to modify an
existing open-source DBMS, in our case the Apache Derby
database, which provides a standalone deployment. The
Derby parser is itself generated off a grammar file using
javacc, but does not explicitly output a syntax tree suitable
for our decomposition. Using the tree-interface of the
parser, we derived a tree inspection tool which traverses
the tree object of a query and writes out the corresponding
node information. SQL Query Victimization To incorporate
more syntax, we determine the parse tree of a query. As we
are interested in the detection of abnormal queries within
our database application, we are looking for a similarity
measure for the space of structured objects, i.e. the space of
valid SQL parse trees. Thus, we are faced with the problem
of having to create a distance function for matching trees.
Let q be an SQL query and _q the parse tree of q,
identifying with _q the root node of the tree. Each node n
within that tree is labeled with an identifier type(n),
reflecting the node type. For a node n within we denote by
succ(n) the ordered set of successors of n and by succi(n)
the ith child of n.
This definition is basically just a formalization of a query’s
syntax tree. It allows us to enlist the production or
grammar rules, which generate a given SQL query q. This
list of production rules will be defined as follows:
Definition: For a node n within the parse tree _q of a query
q, the list of production rules P(n) is given by

푃(푛) =
⊎

푐 ∈ 푠푢푐푐(푛){푡푦푝푒(푛) → 푡푦푝푒(푐)} ⊎	
⊎

푐 ∈ 푠푢푐푐(푛)푃(푐)

Given P(n), denote by |P(n)|r the number of times the rule
r occurs in P(n). Please note that we use the] notation here
for list concatenation, thus, the resulting list may contain
the same rule more than once. Now, denoting with Q the
set of all valid trees for a given SQL dialect, these simple
definitions allow us to define a mapping ' : Q ! Rn, by
following the bag of words approach known from text
classification tasks like spam detection as proposed in [16].

3. Performance Analysis

The evaluation of the different modeling approaches we
collected data of the popular Typo3 content management
system. This application heavily depends on the use of SQL
for various tasks beyond page content storage, such as
session-persistence, user-management and even page-
caching.

Table1: capabilities of the different models in Cross
Validations

We created a set of distinct queries and added synthetic
attacks, which closely reflect modifications that would
follow from SQL injections, by inserting typical injection
vectors such as OR ’a’ = ’a’ or the like into legal statements.
The intention was to observe whether, using different
models, the SVM is to distinguish between legal and
malicious statements even though the latter were only
marginally different.

Importance of Context- Sensitive
A central question in our work is the importance of
contextual information when analyzing SQL queries. We
therefore analyzed approaches such as n-grams, term-
vector and the SQL victimization described.. In this
experiment we did not mean to train a detector, but
wanted to explore the expressiveness of the different
models and determined the detection rate (TPR) and the
false-positive rate (FPR) of the different modeling
approaches. As learning algorithm we used an SVM
approach within a 10-fold cross-validation. As you can see
from table 1, the use of context information results in
performance gains especially with respect to the detection
rate (TPR) and the fraction of false positives (FPR). This
supports our thesis on the importance of the context when
analyzing SQL queries. It is worth noting, that the variance
in TPR/FPR within the 10-fold cross validation proved to be
much smaller for the context-sensitive methods.
Additionally, the training time using term- or sql-
vectorization decreased due to the smaller number of
(irrelevant) attributes. The times in table 1 refer to the

International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 688
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

complete parameter-optimization and 10-fold cross-
validation process.

4. Conclusion

In this paper we presented two approaches for a context
sensitive modeling/ fingerprinting of SQL queries by use of
generic models. Using tree-kernels for analyzing SQL
statements brings together the results of natural language
processing with a highly structured query language. The
results confirm the benefit of incorporation of syntax
information of previous works [11; 12] in the domain of
SQL queries. The consideration of the SQL structures shows
performance gains in both performance and speed, the later
due to the fewer but far more meaningful features.
Compared to previous approaches the tree-kernels allow
for a similarity measure on SQL statements providing
flexible generalization capabilities. However, a drawback in
the use of tree-kernels is their computational overhead.
Given a set of 1015 queries, the computation of the kernel
matrix took about 210 seconds. Use of hierarchical models,
such as hierarchical clustering, may lower the impact of this
performance decrease for future detection models.
References

[1] Meixing Le, AngelosStavrou, Brent ByungHoon Kang,”
Double Guard: Detecting Intrusions in Multitier Web
Applications”, IEEE Transactions on dependable and secure
computing, vol. 9, no. 4, July/august 2012.

[2] F. Valeur, G. Vigna, C. Kru¨ gel, and R.A. Kemmerer, “A
Comprehensive Approach to Intrusion Detection
AlertCorrelation,” IEEE Trans. Dependable and Secure
Computing, vol. 1, no. 3, pp. 146-169, July-Sept. 2004.

[3] Openvz, http://wiki.openvz.org, 2011.
[4] Joomlacms, http://www.joomla.org/, 2011.
[5] http://www.dummies.com/how-to/ content/ examining-

differenttypes- of-intrusion-detection s.html
[6] http://advanced-network-security .blogspot

.in/2008/04/threemajor- types-of-ids.html
[7] M. Cova, D. Balzarotti, V. Felmetsger, and G. Vigna,

“Swaddler: An Approach for the Anomaly-Based Detection
of State Violations in Web Applications,” Proc. Int’l Symp.
Recent Advances in Intrusion Detection (RAID ’07), 2007.

[8] Karen scarfone,Petermell,”Guide to Intrusion Detection and
Prevention Systems (IDPS)” , NIST National institute of
standards & Technology (Technology Administration U.S.
Department of commerce , Special Publication 800-94

[9] http://www.omnisecu.com/ security/ infrastructure- and-
emailsecurity/ types- of-intrusion-detection-systems.htm.

[10] http://en.wikipedia.org/ wiki/ Multitier
_architecture#Comparison_with_MVC _architecture.

[11] R. Gerstenberger. Anomaliebasierte Angriffserkennung im
FTP-Protokoll. Master’s thesis, University of Potsdam,
Germany, 2008.

[12] P. D¨ussel, C. Gehl, P. Laskov, and K. Rieck. Incorporation of
application layer protocol syntax into anomaly detection. In
Proc. of Int. Conf. on Information Systems Security (ICISS),
pages 188–202, 2008.

[13] Y. Hu and B. Panda. A data mining approach for database
intrusion detection. In Proc. of ACM SAC, pages 711–716.
ACM, 2004.

[14] A. Srivastava, S. Sural, and A. K. Majumdar. Database
intrusion detection using weighted sequence mining. JCP,
1(4):8–17, 2006.

[15] A. Roichman and E. Gudes. DIWeDa - detecting intrusions
in web databases. In Proc. of IFIP Conf. on Data and Appl.
Security, pages 313–329. Springer, 2008.

[16] D. D. Lewis. Naive (bayes) at forty: The independence
assumption in information retrieval. In Machine Learning:
ECML-98, pages 4–15. Springer, 1998.

[17] K. Rieck, T. Holz, C. Willems, P. D¨ussel, and P. Laskov.
Learning and classification of malware behaviour. In Proc. of
DIMVA. Springer, 2008.

[18] D. Haussler. Convolution kernels on discrete structures.
Technical report, Dept. of Computer Science, UC Santa Cruz,
1999.

[19] M. Collins and N. Duffy. Convolution kernels for natural
language. In Advances in Neural Information Processing
Systems 14, pages 625–632. MIT Press, 2001.

[20] G. D. Zhou, M. Zhang, D. H. Ji, and Q. M. Zhu. Tree
kernelbased relation extraction with context-sensitive
structured parse tree information. In Proc. of Joint Conf. on
Empirical Methods in Natural Language Processing and
Computational Natural Language Learning, pages 728–736.
Assoc. for Computer Linguistics, 2007

[21] Open Web Application Security Project. The Top list of most
severe web application vulnerabilities, 2004.

[22] M. Roesch. Snort: Lightweight intrusion detection for
networks. In Proc. of LISA, pages 229–238. USENIX, 1999.

